The shared genome is a pervasive constraint on the evolution of sex-biased gene expression.

نویسندگان

  • Robert M Griffin
  • Rebecca Dean
  • Jaime L Grace
  • Patrik Rydén
  • Urban Friberg
چکیده

Males and females share most of their genomes, and differences between the sexes can therefore not evolve through sequence divergence in protein coding genes. Sexual dimorphism is instead restricted to occur through sex-specific expression and splicing of gene products. Evolution of sexual dimorphism through these mechanisms should, however, also be constrained when the sexes share the genetic architecture for regulation of gene expression. Despite these obstacles, sexual dimorphism is prevalent in the animal kingdom and commonly evolves rapidly. Here, we ask whether the genetic architecture of gene expression is plastic and easily molded by sex-specific selection, or if sexual dimorphism evolves rapidly despite pervasive genetic constraint. To address this question, we explore the relationship between the intersexual genetic correlation for gene expression (rMF), which captures how independently genes are regulated in the sexes, and the evolution of sex-biased gene expression. Using transcriptome data from Drosophila melanogaster, we find that most genes have a high rMF and that genes currently exposed to sexually antagonistic selection have a higher average rMF than other genes. We further show that genes with a high rMF have less pronounced sex-biased gene expression than genes with a low rMF within D. melanogaster and that the strength of the rMF in D. melanogaster predicts the degree to which the sex bias of a gene's expression has changed between D. melanogaster and six other species in the Drosophila genus. In sum, our results show that a shared genome constrains both short- and long-term evolution of sexual dimorphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution.

Genes that are differentially expressed between the sexes (sex-biased genes) are among the fastest evolving genes in animal genomes. The majority of sex-biased expression is attributable to genes that are primarily expressed in sex-limited reproductive tissues, and these reproductive genes are often rapidly evolving because of intra- and intersexual selection pressures. Additionally, studies of...

متن کامل

The Effects of CpG Densities around Transcription Start Sites on Sex-Biased Gene Expression in Poecilia reticulata

As most genes are shared between females and males, DNA methylation is assumed to play a crucial role in sex-biased gene expression. DNA methylation exclusively occurs at CpG dinucleotides, and therefore, we would expect that CpG density around transcription start sites (TSSs) relate to sex-biased gene expression. Here we investigated the relationship between CpG densities around TSSs and the r...

متن کامل

I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans

Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...

متن کامل

Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila.

Patterns of polymorphism and divergence in Drosophila protein-coding genes suggest that a considerable fraction of amino acid differences between species can be attributed to positive selection and that genes with sex-biased expression, that is, those expressed predominantly in one sex, have especially high rates of adaptive evolution. Previous studies, however, have been restricted to autosoma...

متن کامل

Rate of Amino Acid Substitution Is Influenced by the Degree and Conservation of Male-Biased Transcription Over 50 Myr of Drosophila Evolution

Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2013